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How to reconstruct the scene (a visible surface) from a set of scattered, noisy and possibly
sparse range data is a challenging problem in robotic navigation and computer graphics. As
most real scenes can be modeled by piecewise smooth surfaces, traditional surface fitting
techniques (e.g. smoothing spline) generally can not preserve sharp discontinuities of sur-
faces. Based on sparse approximation of piecewise smooth functions in frame domain, we
propose a new tight frame based formulation for reconstructing a piecewise smooth sur-
face from a sparse range data set, which is robust to both additive noise and outliers. Fur-
thermore, the resulting minimization problem from our formulation can be efficiently
solved by the split Bregman method [1,2]. The numerical experiments show that the pro-
posed approach is capable of reconstructing a piecewise smooth surface with sharp edges
from sparse range data corrupted with noise and outliers.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

High-quality 3D scene modeling has long been an important research topic in computer vision, robotic navigation, com-
puter graphics and animation. The 3D geometrical model of a scene is usually reconstructed from pre-acquired range data
sets of the scene. There are two types of 3D range data acquisition technologies. One is active scanning technology that di-
rectly captures 3D range data sets using laser or medical scanners; the other is passive scanning technology that derives 3D
range information from photometric images of the scene using computer vision based methods, e.g. shape from shading,
structure from motion and stereo imaging. There are significant differences in terms of quality and accuracy among range
data sets acquired from different acquisition technologies. Digital entertainment industry and computer graphics research-
ers have been using advanced 3D laser scanners to acquire complete and dense 3D range data sets of scenes. However, those
instruments are very costly and bulky which make them unsuitable for many mobile applications such as mobile robot nav-
igation. In contrast, those compact and affordable laser rangefinders can only produce low-resolution range images which
are error-prone in practice. Computer vision based approaches also provide an affordable solution to acquire 3D range data
by using photometric images captured by optical cameras. However, 3D points produced by computer vision techniques are
usually very noisy, with a lot of outliers and sparsely distributed in the 3D space with large gaps.

In the past, there have been extensive researches on reconstructing objects or scenes using range data from a single view
or from multiple views. Interested readers are referred to a recent survey [3, Chapter 4] for more details. In this paper, we
focus on how to reconstruct the scene model using 3D range data of a single view. Because the range data from a single view
can only provide 3D information for visible surfaces of the scene, a piecewise smooth explicit surface model is usually ade-
quate to describe visible surfaces of a scene in most scenarios. It is noted that the discontinuities of the reconstructed piece-
wise smooth surface provide very important information for many applications (e.g. robotics), as the discontinuities of the
. All rights reserved.
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surface either represent the boundaries of objects in the scene or denote the sharp geometrical shape changes of individual
objects. Thus, a desired reconstruction algorithm should preserve surface discontinuities well without over-smoothing these
regions as most traditional surface fitting methods tend to do. Moreover, we concentrate on those 3D range data sets which
are either obtained from low-cost time-of-flight laser rangefinders or estimated from photometric data using computer vi-
sion techniques. As these data sets are very noisy, corrupted with a lot of outliers, sparsely sampled with large gaps, this
paper aims at developing an efficient piecewise smooth surface reconstruction algorithm from a sparse range data set, which
is robust to all the noises and preserves surface discontinuities well.

Reconstructing a piecewise smooth surface using range data can be formulated as a functional reconstruction problem.
Assume that we are given a set of scattered data sites:
N ¼ fx1; x2; . . . ; xng � R2
and associated function values
f jN ¼ ff1; f2; . . . ; fng;
where fi is the function value of an unknown data function f ðxÞ at xi and possibly contains noise, i.e.
fi ¼ f ðxiÞ þ �i:
Our goal is then to reconstruct the data function f under the assumption that f is a piecewise smooth function. It is empha-
sized that the discontinuities of f need to be well preserved in the reconstruction, because they encode important informa-
tion about boundaries of objects on which many high-level tasks depend, Also, the input data sites N can be scattered such
that they are non-uniformly sampled, with large gaps and even sparse (few samples available). And the obtained function
values f jN could be very noisy. All these challenges make the reconstruction a difficult problem.

Among all available functional reconstruction methods, smoothing spline is one of the most widely used methods. The
smoothing spline of order m in Rd is posed as the solution of the following regularized least squares problem:
min
g

Xn

i¼1

ðgðxiÞ � fiÞ2 þ kjgj2Hm ; g 2 Hm; ð1Þ
where the first least squares term measures the fitting error, and the second regularization term measures the roughness of g
by using the semi-norm associated with the Beppo-Levi space Hm in Rd, i.e. jgjHm (see e.g. [4]). The parameter k > 0, the reg-
ularization (or smoothing) parameter, adjusts the balance between data fidelity and regularization. Smoothing spline meth-
od has been successfully applied on solving scattered data approximation problems in a wide range of applications (e.g.
[5,6]).

In this paper, we are interested in surface reconstruction, i.e. the case d ¼ 2. The performance of smoothing spline is good
when the underlying surface is smooth. However, the corresponding computation becomes very expensive when the num-
ber of data sites n grows large, because of the global support of basis functions and the ill-conditionedness of the resulting
linear system. Motivated by the works in [7–9] which use a simple principal shift invariant space and its associated wavelet
transform to fit scattered data, [4] proposed an efficient algorithm to approximate the solution of smoothing spline in a prin-
cipal shift invariant space.

Let X � R2 be a bounded domain of interest where all data sites lie in, and let / be a carefully chosen, compactly sup-
ported continuous function (e.g. uniform B-splines, box splines, nodal basis functions), we look for fitting functions in the
space spanned by those h-dilates and h-shifts of / whose support intersects X, i.e.
Shð/;XÞ ¼
X
k2Z2

cðkÞ/ð�=h� kÞ : cðkÞ ¼ 0 whenever supp/ð�=h� kÞ \X ¼ ;
( )

;

where h > 0 is a scaling parameter that controls the refinement of the space. Then any fitting function sðxÞ 2 Shð/; XÞ can be
written as a finite expansion:
sðxÞ ¼
X
k2I

uk/ðx=h� kÞ; ð2Þ
where I :¼ fk 2 Z2 : supp/ð�=h� kÞ \X ¼ ;g. Let u and f denote the column vector ½uk�k2I and ½fi�16i6n, respectively. In this
finite dimensional space Shð/; XÞ, the smoothing spline formulation (1) can be approximated by the following minimization
min
u

1
2

Au� fk k2
2 þ kuT Gu; ð3Þ
where A is the observation matrix defined by
Aði; kÞ ¼ /ðxi=h� kÞ; i ¼ 1;2; . . . ; n; k 2 I ; ð4Þ
G is a nonnegative definite matrix such that jsj2HmðXÞ ¼ uT Gu (see [4]). Several desirable properties that the space Shð/; XÞ en-
joys motivated us to choose it as an approximation space for fitting a smooth curve or surface to scattered data points. First,
it has a simple structure and provides good approximation to smooth functions as proved in [4], which naturally leads to
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simple and accurate algorithms. The quality of the obtained fitting function is very much equivalent to that of smoothing
spline, but it is done in a much more efficient way by using simpler basis functions. Furthermore, it can be associated to
a wavelet or frame system and hence one can solve the data fitting problem by making use of the advantages that a wavelet
(frame) system can offer. These advantages include sparse approximation of functions in the wavelet (frame) domain, mul-
tilevel structure of basis functions, adaptivity to the data, norm equivalence, etc. In [4], the Sobolev norm equivalence plays
an important role in the design of the efficient algorithm for smooth function reconstruction.

It has been observed in many literatures (e.g. [10,11]) that when ‘2-norm regularization term is applied to the data set
whose underlying function or surface is piecewise smooth, the resulting solution tends to be smooth without sharp discon-
tinuities, as well as undesirable oscillations around the discontinuities. Hence, the smoothing spline method or the method
given in [4] is not suitable for our purpose here because what we are seeking for is a piecewise smooth solution which pre-
serves sharp discontinuities. Recently, several surface reconstruction approaches have been proposed to preserve surface
discontinuity by replacing ‘2 regularization using more sophisticated regularization, e.g. the Huber approximation of ‘1-norm
of function derivatives in [11], the local kernel regularization in [12] and the non-local means regularization in [13].

In the approach taken here, we continue employing the shift invariant space Shð/; XÞ and its associated wavelet frame
system. It is the same spirit of using an approximation space with simple structure to reconstruct the underlying function
or surface from the given data set. However, we will seek a sparse solution of the problem in the wavelet frame domain by
using the fact that piecewise smooth functions can be approximated sparsely by wavelet frames. Let / be a refinable function
from which a wavelet tight frame system can be constructed, e.g. 2D tensor product of a uniform B-spline as used in [4]; see
Section 2 for a short introduction of wavelet tight frame systems. With this choice of /, we can represent the fitting function
sðxÞ in (2) in an associated wavelet tight frame system when h ¼ 1=2J for some positive integer J. Let W be a wavelet frame
transform which transforms the coefficient vector u to the tight frame coefficient vector Wu (this W is also called an analysis
operator in the frame theory). To find a solution in Shð/; XÞ which is sparse in terms of its tight frame coefficients, we take
the following so-called analysis based approach in imaging science (e.g. [1,14–16]), i.e. to find a vector u satisfying
min
u

1
2

Au� fk k2
2 þ kdiagðkÞWuk1; ð5Þ
where A is the observation matrix defined in (4), diagðkÞ is a diagonal matrix with the diagonal being the vector k, and k � k1

denotes the ‘1-norm. The first term in this minimization, as usual, characterizes the fitting error. The second regularization
term kdiagðkÞWuk1 penalizes the roughness of the solution on one hand, and preserves discontinuities on the other hand. We
will give a more detailed discussion on this in the next section.

The type of the minimization problem (5) (with general A and W) encompasses many important formulations in imaging
science and other computational areas, see e.g. [1,2]. The split Bregman method proposed in [2] has been proved to be very
efficient in solving (5) with various successful applications in imaging sciences, see e.g. [1,2,17]. All these observations moti-
vate us to adopt the wavelet frame based method (5) to solve the surface reconstruction problem and use the split Bregman
method as a numerical solver of (5).

The remainder of this paper is organized as follows. Section 2 is devoted to the formulation of wavelet frame based meth-
od and the corresponding algorithm for function or surface reconstruction. Numerical simulations and experiments are given
in Section 3.

2. Surface reconstruction by wavelet tight frame

This section is devoted to the formulation and the algorithm of our wavelet frame based method for functional surface
reconstructions. we start with a brief introduction of wavelet tight frame.

2.1. Wavelet tight frames

We present here some basics of wavelet tight frames. Interested readers should consult [18–21] and the references there-
in to get a complete picture of it. The wavelet tight frames used here are mainly in two variable setting, however, for sim-
plicity, we only present wavelet tight frames in the univariate setting, since we use tensor product wavelet frames in the
implementation.

A countable subset of X � L2ðRÞ is called a tight frame of L2ðRÞ if
f ¼
X
g2X

hf ; gig; 8 f 2 L2ðRÞ: ð6Þ
This is equivalent to
kfk2 ¼
X
g2X

jhf ; gij2; 8 f 2 L2ðRÞ;
where h�; �i and k � k denote the inner product and the norm of L2ðRÞ. Tight frame, as a generalization to orthonormal basis,
relaxes the requirement of X being a basis of L2ðRÞ and brings in redundancy that has been proved useful in many applica-
tions in signal and image processing (see e.g. [22,23]). Since tight frame is redundant, there are an infinite number of possible
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expansions of f in the system X. The particular expansion given in (6) is called the canonical expansion, and fhf ; gig is the
canonical frame coefficient sequence.

A wavelet system XðWÞ is defined to be a collection of dilations and shifts of a finite set W ¼ fw1; . . . ;wrg � L2ðRÞ,
XðWÞ :¼ fwj;k :¼ 2j=2wð2j � �kÞ; j 2 Z; k 2 Z;w 2 Wg:
When XðWÞ forms a tight frame, it is called a wavelet tight frame and each w 2 W is called a framelet. To construct compactly
supported wavelet tight frames, one usually starts with a compactly supported refinable function / (called a scaling func-
tion) with a refinement mask s0 satisfying
/̂ð2�Þ ¼ s0/̂;
where /̂ is the Fourier transform of /, and s0 is a 2p-periodic trigonometric polynomial with s0ð0Þ ¼ 1. For a given compactly
supported refinable function /, the construction of a wavelet tight frame is to find an appropriate set of framelets
W ¼ fw1; . . . ;wrg defined in the Fourier domain by
ŵið2�Þ ¼ si/̂; i ¼ 1;2; . . . ; r;
where the framelet masks si’s are 2p-periodic trigonometric polynomials. The Unitary Extension Principle (UEP) of [21] says
that XðWÞ forms a tight frame provided that
s0ðxÞs0ðxþ cpÞ þ
Xr

i¼1

siðxÞsiðxþ cpÞ ¼ dc;0; c ¼ 0;1:
As an application of UEP, a family of wavelet tight frame systems is derived in [21] by using uniform B-splines as the refin-
able function /. The simplest system in this family is piecewise linear B-spline tight frame which uses piecewise linear B-
spline function as /. This / has the refinement mask s0 ¼ cos2 x

2

� �
, and the corresponding low-pass filter is
h0 ¼
1
4
½1;2;1�:
Two framelets w1;w2 are defined by the framelet masks s1 ¼ �
ffiffi
2
p

i
2 sinðxÞ and s2 ¼ sin2 x

2

� �
, whose corresponding high-pass

filters are
h1 ¼
ffiffiffi
2
p

4
½�1;0;1�; h2 ¼

1
4
½�1;2;�1�: ð7Þ
The plot of /; w1; w2 is given in Fig. 1. Other constructions of wavelet tight frames from higher-order uniform B-splines can
be found in [21]. For the numerical implementation in this paper, we will only use the piecewise linear B-spline tight frame.
The effectiveness of this simple piecewise linear B-spline tight frame has been demonstrated in image restoration [1,24–27].
We will show in this paper that such a simple system can also be used to effectively reconstruct piecewise smooth surface
from a scattered data set.

It is known that the weighted norm of the canonical frame coefficient sequence of a function is equivalent to its function
norm in some spaces, e.g. Sobolev or Besov spaces (see [18,20] for more details). In particular, it is shown in [18] that the ‘1-
norm of the canonical frame coefficient sequence of a function, used as a regularization in (5), is equivalent to its Besov norm
under some mild conditions on framelets. Therefore, the regularization term kdiagðkÞWuk1 in (5) penalizes the roughness of
the solution. It also preserves sharp discontinuities, since the ‘1-norm minimization annihilates small coefficients in the
wavelet frame domain, which is well-known to be able to keep sharp edges. Furthermore, since the canonical expansion
(6) of a tight wavelet system can be sparse (i.e. large number of canonical coefficients are equal or close to zero and negli-
gible, see [18,20]) for a large class of functions, such as piecewise smooth functions, we still get a good approximation by
neglecting small coefficients.

Numerical computation of the wavelet frame transform is done by using the wavelet frame decomposition algorithm gi-
ven in [19]. In fact, we use the decomposition algorithm without down-sampling. This can be easily implemented by using
the refinement and framelet masks. The transform can be represented by a matrix W whose construction depends on the
boundary conditions. In this paper, we use the Neumann (symmetric) boundary condition. Since [25,28] have given details
φ ψ1 ψ2

Fig. 1. The piecewise linear B-spline tight frame system.
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of how to generate such matrix, we omit the detailed discussions here and the interested reader should consult [25,28] for
details.

With the matrix W, it is easy to describe the transformation process. Let u be a vector of scaling coefficients as a given set
of sample data, the frame coefficient vector v can be computed via
v ¼Wu:
Once we have W, the inverse transform, i.e. the reconstruction algorithm, is WT , i.e.
u ¼WTv :
It is very important to note that W can be constructed from the refinement and framelet masks such that WT W ¼ I. The rows
of the matrix W form a tight frame in a finite dimension space which connects well to the wavelet frame system in function
spaces (see e.g. [19] for details). In general, since there are more rows than columns in W ; WWT –I. When WWT ¼ I, then the
rows of W form an orthonormal basis. Finally we remark that in practical computation, we are working in the bivariate set-
ting. We employ the tensor product of 1D wavelet tight frame, and the corresponding matrix W can be constructed easily via
the Kronecker product of the matrix constructed by univariate wavelet frame transform (see [28] for details). In the rest of
this paper, we still use W to denote the discrete transform generated by bivariate wavelet tight frame. We further note that
the W is basically used for notational convenience, in the computation, we do not use matrix multiplication. Instead, we use
a wavelet decomposition and reconstruction algorithm directly modified from [19].

2.2. Formulation

For a given set of scattered sites fxign
i¼1 � X � R2 and the corresponding data ffign

i¼1, our task is to reconstruct a fitting
surface. We assume that X is a rectangle, as the interested domain X is often rectangular in scene reconstruction, Let /
be the 2D tensor product of a uniform B-spline function, and let h ¼ 1=2J be the scaling parameter for some positive integer
J, determined by the density of scattered sites. For example, in our implementation, J is set to 7 when the scattered data is
defined on a 128� 128 grid.

We then look for a function in Shð/; XÞ which fits closely to the given data and at the same time preserves sharp discon-
tinuities. Since any function sðxÞ 2 Shð/; XÞ can be written as
sðxÞ ¼
X
k2I

uk/ð2Jx� kÞ; where I :¼ fk 2 Z2 : supp/ð2J � �kÞ \X ¼ ;g:
sðxÞ is completely determined by the coefficient vector u ¼ ½uk�k2I . Let f ¼ ½fi�16i6n and A be the observation matrix defined by
Aði; kÞ ¼ /ð2Jxi � kÞ; i ¼ 1;2; . . . ;n; k 2 I :
To seek for the fitting function sðxÞ, we propose the following minimization problem:
min
u

HðuÞ þ kdiagðkÞWuk1: ð8Þ
Here the matrix W is a discrete wavelet frame transform associated with the bivariate B-spline tight frame. Note that Wu is
the canonical frame coefficient sequence of sðxÞ, hence the regularization term kdiagðkÞWuk1 penalizes the roughness of the
fitting function sðxÞ, and it also encourages to preserve sharp edges as it is biased to sparse solution of sðxÞ. We note that the
matrix W is constructed via the Neumann boundary condition, which implies that the symmetric boundary condition is used
to extend u across the boundaries of X. The mos popular choice for the data fidelity term HðuÞ is the ‘2-norm of fitting error:
HðuÞ ¼ 1
2

Au� fk k2
2: ð9Þ
From a statistical point of view, the ‘2 fitting term is suitable to data corrupted with Gaussian noise. However, there are usu-
ally a lot of outliers in the data for the scene reconstruction (see e.g. [29]) and it is known that the ‘2 norm is sensitive to
outliers. In such a case, we use the ‘1 data fidelity term:
HðuÞ ¼ kAu� f k1:
The implications of the ‘1 data fidelity term have been studied in many research papers (e.g. [30,31]). In particular, [31] jus-
tified the use of ‘1 data fitting term for processing data corrupted with outliers in both theoretical analysis and numerical
experiments. Roughly speaking, due to its quadratic growth rate, the ‘2-norm fitting does not encourage large deviations
from the given data points and naturally leads to a close fit to the outliers; in contrast, because of its comparatively lower
growth rate, the ‘1-norm fitting promotes sparsity and allows large deviations, thus the bias effect of outliers is effectively
alleviated. In our numerical implementation, we approximate the non-differentiable ‘1 fitting term by its smoothed version
HðuÞ ¼
Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAu� f Þ2i þ a

q
; ð10Þ
where a is a small positive number.
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2.3. Algorithm

In this section, we use the split Bregman algorithm to solve the resulting minimization problem from our surface fitting
formulation. Essentially, we need to find a solution u that satisfies
min
u

EðuÞ ¼ HðuÞ þ kDuk1; ð11Þ
where D ¼ diagðkÞW and
HðuÞ ¼ 1
2

Au� fk k2
2; or

Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAu� f Þ2i þ a

q
:

If general H and D are considered, this type of the minimization problems (11) encompasses many important formulations
in imaging science and other computational areas, see e.g. [1,2]. Numerical solution to such minimization problems was
previously known to be very computationally challenging. However, the split Bregman iteration developed in [2] has been
shown to be a very efficient tool for solving (11). The Bregman iteration was first introduced to image processing commu-
nity in [32] where it was applied to the ROF denoising model. It was then applied to a variety of signal and image process-
ing problems such as basis pursuit [33] and frame based image restoration [34]. The split Bregman iteration extends utility
of the Bregman iteration for a more general class of ‘1 minimization problems. Its basic idea is to convert the unconstrained
minimization problem (11) into a constrained one by introducing an auxiliary variable d ¼ Du and then invoke the Breg-
man iteration to solve the constrained minimization problem. This algorithm connects to some existing algorithms in opti-
mization, as pointed out by [35,36]. In fact, the split Bregman algorithm is equivalent to the alternating direction method of
multipliers [37,38] and the Douglas–Rachford splitting algorithm for the dual problem, see e.g. [39–41]. The split Bregman
algorithm has several attractive features for our application. It converges fast, uses a small memory footprint and is easy to
code, as illustrated in the numerical simulations of [1,2]. The algorithm adapted to our minimization problem (11) is given
as follows.

Let u0 ¼ 0; d0 ¼ b0 ¼ 0, be the initial seeds, the split Bregman algorithm for (11) is given as follows:
ukþ1 ¼ arg minuHðuÞ þ l
2 kDu� dk þ bkk2

2;

dkþ1 ¼ T1=lðDukþ1 þ bkÞ;
bkþ1 ¼ bk þ ðDukþ1 � dkþ1Þ;

8>><
>>: ð12Þ
where l > 0 is a parameter of the algorithm, Th is the soft-thresholding operator defined by
Th : x ¼ ½x1; x2; . . . ; xM� ! ThðxÞ ¼ ½thðx1Þ; thðx2Þ; . . . ; thðxMÞ�;
where
thðnÞ ¼ sgnðnÞmaxf0; jnj � hg:
The stopping criteria for the split Bregman iteration (12) is posed as kdk � Dukk 6 � with � being a given tolerance. Since the
first term H in (11) has two different choices, correspondingly, the first step of each iteration in (12) is either
ðAT Aþ lDT DÞu ¼ AT f þ lDTðdk � bkÞ ð13Þ
or
min
u

Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAu� f Þ2i þ a

q
þ l

2
Du� dk þ bk
��� ���2

2
: ð14Þ
The linear system in (13) is positive definite and therefore it can be solved by the conjugate gradient method. For the min-
imization in (14), since its objective functional is differentiable, it can be solved by the standard gradient descent method.
One aspect of split Bregman iteration that contributes to its efficiency is that it is unnecessary to solve the first subproblem,
i.e. (13) or (14) here, to the full convergence. Instead, only a small number of inner iterations are adequate at each split Breg-
man iteration. For more discussions on efficiency of split Bregman iteration, please refer to [1,2,35]. We remark that although
we use a smoothed version of the ‘1 data fidelity term in the above robust algorithm, the split Bregman iteration actually can
also be used to minimize an energy functional with both ‘1 data fidelity term and ‘1 regularization term, such as L1-TV norm
minimization. The interested reader are referred to [35] for more details.

The following theorem, which follows from [1, Theorem 3.2], says that iteration (12) is the right one to use.

Theorem 1. Iteration (12) satisfies the following property:
lim
k!1

HðukÞ þ kDukk1 ¼ Hðu�Þ þ kDu�k1; ð15Þ
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where u� is a minimizer of (11), whenever k > 0. Furthermore, assume that (11) has a unique minimizer, then iteration (12) con-
verges, i.e.
lim
k!1
kuk � u�k2 ¼ 0: ð16Þ
Proof. To apply [1, Theorem 3.2], we need to prove that there exists a minimizer satisfying (11). The existence of such a min-
imizer follows immediately from the definition of the cost functional. h

Note that the uniqueness of the solution cannot be guaranteed in general. Indeed, the matrix A is not, in general, invert-
ible, since the number of basis functions is normally chosen to be larger than the number of points in order to get a good
approximation. Nevertheless, (15) shows that the iteration leads a solution whose cost functional value is close to the min-
imal value.
3. Numerical experiments

The main purpose of this section is to evaluate the performance of our proposed tight frame based method (8) on recon-
structing a piecewise smooth surface from sparse range data. Our experimental results are compared against that from three
previously developed methods. Numerical experiments are conducted on both synthetic data sets and real data sets. Also,
We evaluate the performance of using the ‘2 fitting term and using the ‘1 fitting term in (8) in the presence of outliers. In
the following section, we give a brief description on three methods chosen for comparison.

3.1. Other methods for comparison

Through the experiments, three representative existing surface fitting methods are chosen to be compared against our
proposed method. The first method for comparison is the smoothing spline method. Instead of using traditional smoothing
spline approach, we use the one proposed in [4] that is to find a solution in a shift invariant space satisfying (3). It is shown in
[4] that this approach reconstructs fitting surfaces which are very similar to that from traditional smoothing spline
approaches.

The second method for comparison is total variation (TV) based method. Let X be partitioned into an M � L rectangular
mesh. We define a set of nodal basis functions on the mesh: each node ðm; lÞ is associated with a nodal basis function, de-
noted by um;l, which is a linear function with value 1 at that node and 0 at all other nodes, and the corresponding nodal var-
iable is um;l; 1 6 m 6 M and 1 6 l 6 L. Here u is denoted by bold face to emphasize that it can be viewed as a matrix, and
with a slight abuse of notation, u also denotes the vector (with k as the index) formed by concatenating the columns of the
matrix. Similar to the case of the frame based reconstruction, the observation matrix A can be formed by evaluating the nodal
basis functions at the given scattered sites, i.e.
Aði; kÞ ¼ ½um;lðxiÞ�; i ¼ 1;2; . . . ; n; k ¼ ðm� 1ÞLþ l:
Let ru ¼ ðrxu; ryuÞ be the discrete gradient operator defined by
ðruÞm;l ¼ ruð Þxm;l; ruð Þym;l
� �
with
ðruÞxm;l ¼
umþ1;l � um;l if m < M

0 if m ¼ M;

�
ðruÞym;l ¼

um;lþ1 � um;l if l < L

0 if l ¼ L:

�
ð17Þ
The discrete isotropic total variation of u can be defined by
TVðuÞ ¼
XM

m¼1

XL

l¼1

ðruÞm;l
			 			;
where jyj :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

1 þ y2
2

q
; 8y ¼ ðy1; y2Þ 2 R2. Then we get the following regularized TV formulation:
min
u

1
2

Au� fk k2
2 þ kTVðuÞ: ð18Þ
This formulation is very similar to the ROF denoising model [16], except that the identity matrix in ROF is replaced by the
observation matrix A, due to the non-uniformity of data sites. TV regularization is known to be able to preserve edges in
the reconstructed function and has been widely used in many imaging restoration models, see e.g. [42]. However, it tends
to produce undesirable ‘‘staircases” artifacts, which appear more pronounced if the reconstructed function is visualized in
terms of a surface rather than an image. The solution to (18) still can be efficiently computed by using split Bregman iter-
ation. Here we do not intend to get into details, instead we refer to [2] for a similar numerical algorithm for the ROF deno-
ising model.
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The last piecewise smooth surface fitting method for comparison [11] is closely related to the above TV-based formula-
tion. The method seeks the solution of the following regularized formulation:
min
u

1
2

Au� fk k2
2 þ k

Xr

i¼1

XM

m¼1

XL

l¼1

U ðDiuÞm;l
� �

; ð19Þ
where D1; . . . ;Dr is a sequence of difference operators acting on u, and U is the Huber function with a positive parameter b:
UðnÞ ¼ n2 if jnj 6 b

b2 þ 2bjn� bj if jnj > b;

(
ð20Þ
which serves as a smooth approximation to the absolute value function, so the regularization in (19) is an approximation of
the ‘1-norm of derivatives of the underlying function. Our implementation only concerns with the first order difference oper-
ator [D1; D2 are defined by (17)], and we choose small b such that the regularization term is a good approximation of aniso-
tropic TV-norm. This method is denoted as the Huber-TV method in the following discussion. Its solution can be computed
using standard optimization schemes, e.g. the gradient descent method, because the objective functional is differentiable.
However, it is noted that the convergence rate could be rather slow.

3.2. Synthetic 3D surface example

The first experiment is conducted on a synthetic 3D surface example with analytic expression, a ‘‘wedding cake” shape
composed of three parallel planes as illustrated in Fig. 2(a). The similar example is also used in [11]. The range data set used
in the experiment is synthesized as follows: a set of 1000 points on the 3D shape are randomly sampled and then corrupted
by Gaussian noise Nð0;r2Þwith r ¼ 0:01. Fig. 2(b) shows a vanilla version of the reconstructed surface from this synthesized
data set using nearest neighbor interpolation to illustrate how the noisy samples of the underlying surface look like. Then,
the reconstruction results from our proposed algorithm with ‘2 norm fitting term and from three other methods are shown
in Fig. 2(c)–(f). The regularization parameters used in each method are shown in the corresponding figure, which are chosen
by trial-and-error. h is set to 1/128 in this experiment. For the regularization factor diagðkÞ in our wavelet frame based meth-
od, we set those parameters corresponding to scaling coefficients to a very small number and all the others to a constant k.

It is not surprising to see that the smoothing spline method is not capable of simultaneously suppressing noise and pre-
serving sharp edges. as shown in Fig. 2(c). And it cannot be remedied by adjusting the corresponding smoothing parameter
as using large values of smoothing parameter will over-smooth edges and using small values of smoothing parameter can
not remove noise. In contrast, all three other methods: Huber-TV method, TV method and our wavelet frame based method
can preserve sharp edges while removing most noises, as shown in Fig. 2(d)–(f), respectively. However, a close-up examina-
tion (Fig. 2(g)–(i)) shows that the results from these three methods differs quite noticeably in terms of visual quality. In the
result from Huber-TV method shown in Fig. 2(g), the supposedly straight planes are distorted to arc surfaces, due to the
introduction of the parameter b used for smoothing ‘1 norm. It is noted that such artifacts can be alleviated by using smaller
b. However, the convergence of the corresponding solver, gradient descent algorithm, will be extremely slow if the value of b
is small. The result from TV method also suffers from noticeable artifacts. One is the well-known ‘‘staircase” type of artifacts;
the other is the rounded corners as shown in Fig. 2(h). It is easy to see that the result from our frame based algorithm
(Fig. 2(i)) has the least noticeable artifacts.

3.3. Experiments on range data sets

In this section, we conduct experiments on both synthesized and real range data sets to evaluate the performance of our
proposed wavelet frame based method in the presence of noise. As the tested range data sets have resolution 2J � 2J where
J ¼ 7 or 8, the scaling parameter h is set to 1=2J .

The first experimental range data set is synthesized for a simple indoor scene with objects of typical shapes. The photo-
metric image is shown in Fig. 3(a) and the corresponding range image is shown in Fig. 3(b), where the darker intensity de-
notes the less distance away from range camera. The surface from the full range data set with size 256� 256 is shown in
Fig. 4(a). The range date set used for the input of the reconstruction is a 5% randomly selected subset of the range data
set followed by the corruption of Gaussian noise, as shown in (4)(b) using nearest neighbor interpolation. The reconstructed
results from three previous methods and our proposed method are shown in Fig. 4(c)–(f), respectively.

The second experimental range data set is a real data set from the online USF range image database [43], which is orig-
inally attributed to the CESAR lab of Oak Ridge national laboratory at Tennessee. The range image is of size 128� 128. The
input used in our experiments is similar to the ones considered in [44]: only a number of horizontal scan lines (one of each
seven horizontal scan lines) available and corrupted with Gaussian noise ðr ¼ 1Þ. Fig. 5 shows the surface from the latent full
data set, the result from partial noisy data set using nearest neighbor interpolation, and the results from the same partial
noisy data set using three previous algorithms and our proposed algorithm.

The experimental results on the above two sparse noisy range data sets clearly indicate the better performance of our
proposed algorithm over three previously developed algorithms for sparse and noisy range data sets. Similar to previous



Fig. 3. The photometric image and range image of a simple indoor scene.

Fig. 2. Reconstruction of a noisy ‘‘wedding cake” shape. (a) Original latent surface. (b) The surface reconstructed from a noisy sample set of the original
surface using nearest neighbor interpolation. (c) The reconstructed surface by the smoothing spline method (3) with k ¼ 196 using the same sample set. (d),
(e) and (f) are the results obtained from Huber-TV method (19), TV-based method (18) and our wavelet frame based method (8) with the ‘2 fitting term,
respectively; the employed regularization parameters are k ¼ 20; 0:02; 0:005, respectively. (g)–(i) show one portion of surfaces in (d)–(f), respectively.
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Fig. 4. Reconstruction of a noisy range map. (a) Original range map surface. (b) The surface from a sparse noisy sample set using nearest neighbor
interpolation. (c)–(f) are, respectively, the reconstructions obtained by the smoothing spline (3), the Huber-TV method (19), the TV-based method (18) and
the wavelet frame based method (8) with the ‘2 fitting term; the employed regularization parameters are k ¼ 132; 98; 2; 1, respectively.
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experimental results, the smoothing spline method clearly is not suitable for solving general piecewise surface fitting prob-
lems as it does not preserve shape edges. Both Huber-TV method and TV method preserve sharp edges much better than
smoothing spline method does. However, there are noticeable artifacts in the surfaces reconstructed by these two methods,
specially those ‘‘staircase” artifacts. Although the usage of large values of b in Huber-TV method may alleviate the staircase
artifacts, but the sharp discontinuities of the surface will be smoothed out at the same time. Overall, our wavelet frame based
method yields the result with sharp edges and with less visible artifacts than that of other methods.

One main argument why wavelet frame based method performs better than TV (and Huber-TV) method is that TV reg-
ularization used in these two methods only utilizes the gradients of the underlying function while frame based regulariza-
tion (the ‘1-norm of canonical frame coefficients) used in our method encodes additional information regarding higher-order
derivatives. It is noted that the two filters h1; h2 in (7) are indeed the first and second order difference operators, respec-
tively. The advantages of incorporating higher-order derivative information in the regularization term to suppress the stair-
case artifacts in the result are also observed in some recent research works (e.g. [45,46]). In our frame based approach, the
regularization on both lower-order and higher-order derivative information are elegantly fused together in one tight frame
system, and the resulting surface does not suffer from staircase artifacts.

In the applications with data points only available at very sparse locations or only scanned in a very low-resolution, e.g.
the 3D points from photometric images via computer vision techniques or range image captured by cheap time-of-flight
rangefinders, a straightforward application of our frame-based algorithm on such data sets may not always lead to a satis-
factory result. Because the regularization term is not strong enough to stitch all data together to produce a valid surface due
to the fact that too few data constraints are available. In such a case, a preprocessing process on the inputed data is proposed
to increase the data size before the actual frame-based algorithm is applied. The preprocessing procedure is as follows. First,
we use cubic interpolation to approximate the given data on a finer grid. Considering that the reliable data points on the grid
are those close enough to the inputed data, we then only add those reliable data points to the inputed data set to form a new
data set. Then this new data set is used as the input of our wavelet frame based method. To illustrate the very low require-
ment of our proposed method on the sample size of needed range data set, we consider the case of only a very small number



Fig. 5. Reconstruction on a USF data set. (a) The surface from the original data set; (b) the surface from partially scanned noisy data using nearest neighbor
interpolation. (c)–(f) are the results from the partially scanned noisy data set using smoothing spline (3), Huber-TV method (19), the TV-based method (18)
and wavelet frame based method (8), respectively; the employed regularization parameters are k ¼ 98; 1:5; 2; 1:5, respectively.

Fig. 6. Reconstruction on a very sparse data set. (a) Sparse data sites and the corresponding noisy functional values; (b) the result from smoothing spline
method (3) without preprocessing ðk ¼ 66Þ. (c) The result from wavelet frame based method (8) with the preprocessing step ðk ¼ 2Þ.
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of data points available from the data set shown in Fig. 5 (163 points out of the full set with 16,384 points). Fig. 6 shows the
noisy functional values, and the surfaces reconstructed from this sparse data set by the smoothing spline method and our
wavelet frame based method with the proposed preprocessing step.

Finally, one experiment is done on the surface with much more complicate geometrical structures. This data set, taken
from the online OSU range image database [47], is shown in of Fig. 7(a), which gives the depth map of a Buddha statue. Only



Fig. 7. Reconstruction on a Buddha statue. (a) The surface from the original data set; (b)–(d) are the results from a sparse noisy data set using smoothing
spline (3), Huber-TV method (19) and wavelet frame based method (8), respectively; the employed regularization parameters are k ¼ 1:3; 0:3; 0:06,
respectively. (e)–(g) are one portion of (b)–(d), respectively.
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a noisy subset of the original data set (20%) is used as the input. The results from smoothing spline method, Huber-TV meth-
od and our method are shown in Fig. 7. The reconstruction by TV method is not shown as it appears nearly the same as that
by Huber-TV method. Similarly, the result from our method is the one with least noticeable artifacts.
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3.4. Reconstruction for data with outliers

In addition to additive noise, there could be also a lot of outliers in the range data. Dynamic environment changes and the
physical limitations of range camera could introduce a lot of outliers in the captured range image (see e.g. [29]), and even
state-of-art vision techniques will also unavoidably give a lot of false 3D points when inferring 3D depth of feature points
from photometric images.

In this section, numerical experiments are conducted on two range data sets corrupted with both Gaussian noise and out-
liers. The results from wavelet frame based method (8) with ‘2 fitting term are compared against that with ‘1 fitting term. To
better evaluate the performance of ‘2 fitting term and ‘1 fitting term on suppressing outliers, we use different regularization
Fig. 8. Reconstruction on data corrupted with both Gaussian noise and outliers. (a) The noisy data with outliers; (b), (c) the results from wavelet frame
based method (8) with ‘2 fitting term (k ¼ 1; 10, respectively); (c) the result from wavelet frame based method (8) with ‘1 fitting term ðk ¼ 0:5Þ.
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parameters for two regularization terms such that both corresponding methods give the same ‘2 value of residual error. The
inputed data with outliers and the reconstructed surfaces from these two methods are shown in Figs. 8 and 9. It is seen that
the method with ‘2 fitting term either does not suppress outliers when using a small regularization parameter as the result-
ing surface tends to interpolate the outliers; or produces a over-smoothed surface when using a large regularization param-
eter. See Figs. 8(b), (c) and 9(b), (c) for the visual comparison.
3.5. Discussions

In this paper, a new method for reconstructing piecewise smooth surfaces from sparse range data is proposed by exploit-
ing the sparsity of piecewise functions in wavelet tight frame domain. And the resulting minimization can be efficiently
Fig. 9. Reconstruction on data corrupted with both Gaussian noise and outliers. (a) The noisy data with outliers; (b), (c) the results from wavelet frame
based method (8) with ‘2 fitting term (k ¼ 0:1;0:5, respectively); (d) the result from wavelet frame based method (8) with ‘1 fitting term ðk ¼ 1:2Þ.
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solved by the split Bregman method. Through various experiments, the proposed method demonstrates its strong robustness
to both additive noise and outliers and outperforms many previous developed methods in terms of the visual quality of re-
sults. The robustness to noise and outliers are particularly important for solving the problem of surface fitting using range
data from vision techniques as there usually exist a lot of falsely detected 3D points in these range data sets. Furthermore, it
is shown that the proposed method is even applicable for very sparse range data sets, which makes it a very attractive post-
process to improve the quality (e.g. signal-to-noise ratio, resolution) of data sets from low-cost time-of-flight rangefinders. In
future, we are interested in investigating the possibility of incorporating our surface fitting algorithm into the depth com-
putation of image feature points by vision techniques for further performance improvements. Also, the extension of our cur-
rent approach to address more general surface fitting problems will be considered in the near future.
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